Kajian Teknologi Alternatif Pengolahan Sampah Padat Perkotaan menjadi Energi Terbarukan Ramah Lingkungan
DOI:
https://doi.org/10.32528/jp.v9i1.1757Keywords:
sampah kota, energi dari sampah, insinerasi, pirolisis, gasifikasiAbstract
Seiring dengan bertambahnya jumlah penduduk dan pertumbuhan ekonomi, maka terjadi peningkatan timbunan sampah di hampir semua kota di Indonesia. Sementara kondisi tempat pembuangan akhir (TPA) sampah saat ini sudah atau hampir penuh, sehingga tidak bisa menampung sampah lebih banyak lagi. Oleh karena itu, perlu ada solusi jangka pendek untuk menjawab permasalahan kedaruratan sampah ini. Kajian ini menganalisis beberapa teknologi alternatif yang dapat digunakan untuk mengolah sampah padat perkotaan menjadi sumber energi. Dari hasil review, teknologi termal merupakan proses yang paling cepat dan meninggalkan residu yang paling sedikit. Teknologi termal yang dapat diterapkan yaitu pembakaran/insinerasi, gasifikasi, dan pirolisis. Teknologi insinerasi dapat digunakan pada skala besar karena melibatkan proses yang menggunakan ketel uap (boiler) dan turbin. Sementara gasifikasi lebih cocok diterapkan pada skala yang lebih kecil dengan menggunakan mesin gas atau mesin diesel sebagai pembangkit listriknya. Sedangkan pirolisis lebih sesuai untuk jenis sampah homogen dan tertentu seperti plastik dan ban bekas.
References
M. Syamsiro, “Kajian Pemilihan Teknologi Pembangkit Listrik Tenaga Sampah (PLTSa) ,” Surakarta, May 2021.
M. Syamsiro, S. G. Herawan, and M. N. Aridito, “Potential of MSW and COVID-19 Medical Waste as Feedstocks for Gasification Process,” in Proceedings of the 2nd International Interdisciplinary Conference on Environmental Sciences and Sustainable Developments (IICESSD) 2022, Palu: Atlantis Press, Jan. 2024, pp. 1–7.
Y. Ding et al., “A review of China’s municipal solid waste (MSW) and comparison with international regions: Management and technologies in treatment and resource utilization,” Journal of Cleaner Production, vol. 293. Elsevier Ltd, Apr. 15, 2021. doi: 10.1016/j.jclepro.2021.126144.
S. N. M. Menikpura, J. Sang-Arun, and M. Bengtsson, “Assessment of environmental and economic performance of Waste-to-Energy facilities in Thai cities,” Renew Energy, vol. 86, pp. 576–584, Feb. 2016, doi: 10.1016/j.renene.2015.08.054.
K. A. Ayuba, L. A. Manaf, A. H. Sabrina, and S. W. N. Azmin, “Current Status of Municipal Solid Waste Management Practise in FCT Abuja,” Research Journal of Environmental and Earth Sciences, vol. 5, no. 6, pp. 295–304, Jun. 2013, doi: 10.19026/rjees.5.5704.
H. O. Iyamu, M. Anda, and G. Ho, “A review of municipal solid waste management in the BRIC and high-income countries: A thematic framework for low-income countries,” Habitat International, vol. 95. Elsevier Ltd, Jan. 01, 2020. doi: 10.1016/j.habitatint.2019.102097.
MEFI, “Solid waste composition based on waste sources,” Ministry of Environment and Forestry Indonesia. Accessed: Jan. 12, 2024. [Online]. Available: https://sipsn.menlhk.go.id/sipsn/
F. D. Qonitan, I. Wayan Koko Suryawan, and A. Rahman, “Overview of Municipal Solid Waste Generation and Energy Utilization Potential in Major Cities of Indonesia,” in Journal of Physics: Conference Series, IOP Publishing Ltd, Apr. 2021. doi: 10.1088/1742-6596/1858/1/012064.
KLHK, “Komposisi sampah berdasarkan sumber dan jenis sampah Tahun 2022,” Kementerian Lingkungan Hidup dan Kehutanan.
A. Kumar and S. R. Samadder, “A review on technological options of waste to energy for effective management of municipal solid waste,” Waste Management, vol. 69. Elsevier Ltd, pp. 407–422, Nov. 01, 2017. doi: 10.1016/j.wasman.2017.08.046.
A. Sarwono et al., “Refuse Derived Fuel for Energy Recovery by Thermal Processes. A Case Study in Depok City, Indonesia,” Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, vol. 88, no. 1, pp. 12–23, 2021, doi: 10.37934/arfmts.88.1.1223.
Q. Wang, Z. Zhang, M. Wang, and B. Wang, “Smart Management Platform for Landfilling of Waste after Mechanical Biological Treatment,” Advances in Civil Engineering, vol. 2022, 2022, doi: 10.1155/2022/5376066.
H. Li et al., “Expanding plastics recycling technologies: chemical aspects, technology status and challenges,” Green Chemistry, vol. 24, no. 23. Royal Society of Chemistry, pp. 8899–9002, Sep. 14, 2022. doi: 10.1039/d2gc02588d.
T. A. Kurniawan, M. H. Dzarfan Othman, G. H. Hwang, and P. Gikas, “Unlocking digital technologies for waste recycling in Industry 4.0 era: A transformation towards a digitalization-based circular economy in Indonesia,” J Clean Prod, vol. 357, Jul. 2022, doi: 10.1016/j.jclepro.2022.131911.
O. K. M. Ouda, S. A. Raza, A. S. Nizami, M. Rehan, R. Al-Waked, and N. E. Korres, “Waste to energy potential: A case study of Saudi Arabia,” Renewable and Sustainable Energy Reviews, vol. 61. Elsevier Ltd, pp. 328–340, Aug. 01, 2016. doi: 10.1016/j.rser.2016.04.005.
Anonym, “Overview of Anaerobic Digestion for Municipal Solid Waste,” Oct. 2016. Accessed: Jan. 22, 2024. [Online]. Available: www.globalmethane.org
M. Cyranka and M. Jurczyk, “Energy Recovery from Municipal Waste based on Moving Grate Technology,” Agricultural Engineering, vol. 20, no. 1, pp. 23–33, Apr. 2016, doi: 10.1515/agriceng-2016-0003.
P. E. Escamilla-García, R. H. Camarillo-López, R. Carrasco-Hernández, E. Fernández-Rodríguez, and J. M. Legal-Hernández, “Technical and economic analysis of energy generation from waste incineration in Mexico,” Energy Strategy Reviews, vol. 31, Sep. 2020, doi: 10.1016/j.esr.2020.100542.
B. Leckner and F. Lind, “Combustion of municipal solid waste in fluidized bed or on grate – A comparison,” Waste Management, vol. 109. Elsevier Ltd, pp. 94–108, May 15, 2020. doi: 10.1016/j.wasman.2020.04.050.
M. Syamsiro, “Kajian Pengaruh Penggunaan Katalis Terhadap Kualitas Produk Minyak Hasil Pirolisis Sampah Plastik,” Jurnal Teknik, vol. 5, no. 1, pp. 47–56, Apr. 2015.
Y. Du, T. Ju, Y. Meng, T. Lan, S. Han, and J. Jiang, “A review on municipal solid waste pyrolysis of different composition for gas production,” Fuel Processing Technology, vol. 224. Elsevier B.V., Dec. 15, 2021. doi: 10.1016/j.fuproc.2021.107026.
M. Syamsiro, Z. Mufrodi, R. Rafly, and S. Machmud, “Energy Recovery from Food Packaging Plastics by Thermal and Catalytic Pyrolysis Processes,” Universal Journal of Mechanical Engineering, vol. 8, no. 1, pp. 51–58, Jan. 2020, doi: 10.13189/ujme.2020.080107.
J. Aguado, D. P. Serrano, G. San Miguel, M. C. Castro, and S. Madrid, “Feedstock recycling of polyethylene in a two-step thermo-catalytic reaction system,” J Anal Appl Pyrolysis, vol. 79, no. 1, pp. 415–423, 2007, doi: https://doi.org/10.1016/j.jaap.2006.11.008.
S. D. Anuar Sharuddin, F. Abnisa, W. M. A. Wan Daud, and M. K. Aroua, “A review on pyrolysis of plastic wastes,” Energy Conversion and Management, vol. 115. Elsevier Ltd, pp. 308–326, May 01, 2016. doi: 10.1016/j.enconman.2016.02.037.
B. Kunwar, H. N. Cheng, S. R. Chandrashekaran, and B. K. Sharma, “Plastics to fuel: a review,” Renewable and Sustainable Energy Reviews, vol. 54. Elsevier Ltd, pp. 421–428, Feb. 01, 2016. doi: 10.1016/j.rser.2015.10.015.
J.-L. Wang and L.-L. Wang, “Catalytic Pyrolysis of Municipal Plastic Waste to Fuel with Nickel-loaded Silica-alumina Catalysts,” Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, vol. 33, no. 21, pp. 1940–1948, Aug. 2011, doi: 10.1080/15567030903436814.
W. Takaaki, Z. H. Zar, and N. Hideki, “Oil production from polyethylene plastics by thermal pyrolysis using a reflux condenser,” in Advanced Materials Research, Trans Tech Publications Ltd, 2014, pp. 842–845. doi: 10.4028/www.scientific.net/AMR.1025-1026.842.
J. Walendziewski, “Continuous flow cracking of waste plastics,” Fuel Processing Technology, vol. 86, no. 12–13, pp. 1265–1278, Aug. 2005, doi: 10.1016/j.fuproc.2004.12.004.
T. Masuda, T. Kushino, T. Matsuda, S. R. Mukai, K. Hashimoto, and S.-I. Yoshida, “Chemical recycling of mixture of waste plastics using a new reactor system with stirred heat medium particles in steam atmosphere,” 2001.
S. Uçar, A. R. Özkan, and S. Karagöz, “Co-pyrolysis of waste polyolefins with waste motor oil,” J Anal Appl Pyrolysis, vol. 119, pp. 233–241, May 2016, doi: 10.1016/j.jaap.2016.01.013.
S. Breyer, L. Mekhitarian, B. Rimez, and B. Haut, “Production of an alternative fuel by the co-pyrolysis of landfill recovered plastic wastes and used lubrication oils,” Waste Management, vol. 60, pp. 363–374, Feb. 2017, doi: 10.1016/j.wasman.2016.12.011.
M. Syamsiro, M. A. Saputro, J. Winarno, B. Megaprastio, and Z. Mufrodi, “Studi Co-pirolisis Plastik HDPE dan Oli Bekas Menjadi Bahan Bakar Cair Alternatif,” in Prosiding Seminar Nasional Diseminasi Hasil Penelitian (deHAP) 2021, Yogyakarta: Universitas Janabadra, Dec. 2021, pp. 331–337.
M. Syamsiro, B. Megaprastio, J. Winarno, M. Saputro, and Z. Mufrodi, “Produksi Bahan Bakar Minyak Alternatif Dari Pirolisis Plastik Polipropilen dan Oli Bekas,” in Prosiding Seminar Nasional Diseminasi Hasil Penelitian (deHAP) 2021, Yogyakarta: Universitas Janabadra, Dec. 2021, pp. 317–325.
S. A. Y. Shah, M. Zeeshan, M. Z. Farooq, N. Ahmed, and N. Iqbal, “Co-pyrolysis of cotton stalk and waste tire with a focus on liquid yield quantity and quality,” Renew Energy, vol. 130, pp. 238–244, Jan. 2019, doi: 10.1016/j.renene.2018.06.045.
N. I. Izzatie et al., “Co-pyrolysis of rice straw and polypropylene using fixed-bed pyrolyzer,” in IOP Conference Series: Materials Science and Engineering, Institute of Physics Publishing, Dec. 2016. doi: 10.1088/1757-899X/160/1/012033.
P. Lu, Q. Huang, A. C. (Thanos) Bourtsalas, Y. Chi, and J. Yan, “Synergistic effects on char and oil produced by the co-pyrolysis of pine wood, polyethylene and polyvinyl chloride,” Fuel, vol. 230, pp. 359–367, Oct. 2018, doi: 10.1016/j.fuel.2018.05.072.
Y. Wang et al., “Catalytic co-pyrolysis of waste vegetable oil and high density polyethylene for hydrocarbon fuel production,” Waste Management, vol. 61, pp. 276–282, Mar. 2017, doi: 10.1016/j.wasman.2017.01.010.
S. Matali, N. A. Rahman, S. S. Idris, A. Alias, and M. Mohatar, “Characteristics of Malaysian Sub-Bituminous Coal and Waste HDPE Blends Via TGA,” J Teknol, vol. 76, no. 10, pp. 21–26, 2015, [Online]. Available: www.jurnalteknologi.utm.my
P. A. Bozkurt, O. Tosun, and M. Canel, “The synergistic effect of co-pyrolysis of oil shale and low density polyethylene mixtures and characterization of pyrolysis liquid,” Journal of the Energy Institute, vol. 90, no. 3, pp. 355–362, Jun. 2017, doi: 10.1016/j.joei.2016.04.007.
A. R. Saleh, B. Sudarmanta, H. Fansuri, and O. Muraza, “Syngas production from municipal solid waste with a reduced tar yield by three-stages of air inlet to a downdraft gasifier,” Fuel, vol. 263, Mar. 2020, doi: 10.1016/j.fuel.2019.116509.
P. R. Bhoi, R. L. Huhnke, A. Kumar, S. Thapa, and N. Indrawan, “Scale-up of a downdraft gasifier system for commercial scale mobile power generation,” Renew Energy, vol. 118, pp. 25–33, Apr. 2018, doi: 10.1016/j.renene.2017.11.002.
G. Oh et al., “Syngas production through gasification of coal water mixture and power generation on dual-fuel diesel engine,” Journal of the Energy Institute, vol. 92, no. 2, pp. 265–274, 2019, doi: https://doi.org/10.1016/j.joei.2018.01.009.
L. I. Chaves et al., “Small-scale power generation analysis: Downdraft gasifier coupled to engine generator set,” Renewable and Sustainable Energy Reviews, vol. 58. Elsevier Ltd, pp. 491–498, May 01, 2016. doi: 10.1016/j.rser.2015.12.033.
S. P. Singh, B. Ohara, and A. Y. Ku, “Prospects for cost-competitive integrated gasification fuel cell systems,” Appl Energy, vol. 290, p. 116753, 2021, doi: https://doi.org/10.1016/j.apenergy.2021.116753.
X. Xiang, G. Gong, C. Wang, N. Cai, X. Zhou, and Y. Li, “Exergy analysis of updraft and downdraft fixed bed gasification of village-level solid waste,” Int J Hydrogen Energy, vol. 46, no. 1, pp. 221–233, 2021, doi: https://doi.org/10.1016/j.ijhydene.2020.09.247.
C. Gai and Y. Dong, “Experimental study on non-woody biomass gasification in a downdraft gasifier,” Int J Hydrogen Energy, vol. 37, no. 6, pp. 4935–4944, 2012, doi: https://doi.org/10.1016/j.ijhydene.2011.12.031.
G. Teixeira, L. Van de Steene, E. Martin, F. Gelix, and S. Salvador, “Gasification of char from wood pellets and from wood chips: Textural properties and thermochemical conversion along a continuous fixed bed,” Fuel, vol. 102, pp. 514–524, 2012, doi: https://doi.org/10.1016/j.fuel.2012.05.039.
A. A. P. Susastriawan, H. Saptoadi, and Purnomo, “Small-scale downdraft gasifiers for biomass gasification: A review,” Renewable and Sustainable Energy Reviews, vol. 76. Elsevier Ltd, pp. 989–1003, 2017. doi: 10.1016/j.rser.2017.03.112.
A. Bhavanam and R. C. Sastry, “Biomass gasification process in downdraft fixed bed reactors A Review,” International Journal of Chemical Engineering and Applications, vol. 2, no. 6, pp. 425–433, 2011.
A. Z. Mendiburu, J. A. Carvalho, and C. J. R. Coronado, “Thermochemical equilibrium modeling of biomass downdraft gasifier: Stoichiometric models,” Energy, vol. 66, pp. 189–201, 2014, doi: https://doi.org/10.1016/j.energy.2013.11.022.

Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Mochamad Syamsiro, Prabang Setyono, Kristiana Hariyanti, Gatot Sutanto

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.