Analisis Kinerja Algoritma Machine Learning dalam Prediksi Harga Cryptocurrency
DOI:
https://doi.org/10.32528/justindo.v9i2.1965Keywords:
Cryptocurrency, Linear Regression, Random Forest, Support Vector Machines (SVM), Long Short-TermAbstract
Cryptocurrency has become an increasingly popular digital asset in recent years. However, cryptocurrency prices are highly volatile and difficult to predict due to being influenced by many factors such as market sentiment, regulations, and technological adoption. This study aims to analyze the performance of several popular machine learning algorithms in accurately predicting cryptocurrency prices. We evaluated four algorithms: Linear Regression, Random Forest, Support Vector Machine (SVM), and Long Short-Term Memory (LSTM) using historical price datasets of Bitcoin, Ethereum, and Litecoin. The data were analyzed by preprocessing steps such as normalization and splitting into training and testing sets. Evaluation metrics used were Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), and prediction accuracy. The experimental results showed that the LSTM algorithm had the best performance in predicting cryptocurrency prices with the highest accuracy and lowest error, followed by SVM, Random Forest, and Linear Regression. Further analysis revealed that LSTM was able to capture patterns and trends in complex time series data.
References
Ariwibowo Tintus Efektivitas Analisis Teknikal Untuk Profitabilitas Cryptocurrency di Spot Market (Analisis Profitabilitas Criptocurrency di Spot Market Menggunakan Pendekatan Analisis Teknikal) [Journal] // Jurnal Ekonomi Manajemen Sistem Informasi (JEMSI). - 2022. - 1 : Vol. 4. - pp. 106-117.
Namira Ufrida Rahmi Sherly Sherly, Rut Arta Pangaribuan Analisis Risk dan Return Investasi pada Bitcoin, Ethereum, Dogecoin, Litecoin, XRP dan Saham SAHAM LQ45 setelah pandemi Covid-19 [Journal] // Journal of Management Studies and Entrepreneurship (MSEJ). - 2023. - 3 : Vol. 4. - pp. 2930 - 2941.
Nurani Alfida Tegar and Setiawan Adi Perbandingan Kinerja Regresi Decision Tree dan Regresi Linear Berganda untuk Prediksi BMI pada Dataset Asthma [Journal] // Jurnal Sains dan Edukasi Sains. - 2023. - 1 : Vol. 6. - pp. 34-43.
Religia Yoga, Nugroho Agung and Hadikristanto Wahyu Analisis Perbandingan Algoritma Optimasi pada Random Forest untuk Klasifikasi Data Bank Marketing [Journal] // Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi). - 2021. - 1 : Vol. 5. - pp. 187-192.
Oktavia Dea, Ramadhan Yudhi Raymond and Minarto Analisis Sentimen Terhadap Penerapan Sistem E-Tilang Pada Media Sosial Twitter Menggunakan Algoritma Support Vector Machine (SVM) [Journal] // KLIK: Kajian Ilmiah Informatika dan Komputer. - 2023. - 1 : Vol. 4. - pp. 407-417.
Rizkilloh Moch Farryz and Widiyanesti Sri Prediksi Harga Cryptocurrency Menggunakan Algoritma Long Short Term Memory (LSTM) [Journal] // Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi). - 2022. - 1 : Vol. 6. - pp. 25-31.
Novianty Deny, Palasara Nico Dias and Qomaruddin Muhammad Algoritma Regresi Linear pada Prediksi Permohonan Paten yang Terdaftar di Indonesia [Journal] // JUSTIN (Jurnal Sistem dan Teknologi Informasi). - 2021. - 2 : Vol. 9. - pp. 81-85.
Soraya Dachi Jan Melvin Ayu and Sitompul Pardomuan Analisis Perbandingan Algoritma XGBoost dan Algoritma Random Forest Ensemble Learning pada Klasifikasi Keputusan Kredit [Journal] // JURNAL RISET RUMPUN MATEMATIKA DAN ILMU PENGETAHUAN ALAM. - 2023. - 2 : Vol. 2. - pp. 87-103.
Cervantes Jair, Garcia-Lamont Farid and Lopez Asdrubal A comprehensive survey on support vector machine classification: Applications, challenges and trends [Journal]. - 2020. - 1 : Vol. 408. - pp. 189-215.
Siregar Sandy Putra and Wanto Anjar ANALYSIS OF ARTIFICIAL NEURAL NETWORK ACCURACY USING BACKPROPAGATION ALGORITHM IN PREDICTING PROCESS (FORECASTING) [Journal] // International Journal Of Information System & Technology. - 2017. - 1 : Vol. 1. - pp. 34-42.
Aniruddha Dutta, R Kumar and M Basu A blockchain-based digital currency with decentralized user-centric control [Journal] // Computers & Security. - 2020. - Vol. 98. - p. 102023.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Syarif Aminul Khoiri, Abdul Wahid

This work is licensed under a Creative Commons Attribution 4.0 International License.