Rancang Bangun dan Evaluasi Sistem Peringatan Dini Panel Pompa Air Pamsimas Berbasis Esp32 dan Telegram Bot
DOI:
https://doi.org/10.32528/jp.v10i1.3580Keywords:
sistem peringatan dini; ESP32; telegram bot; PAMSIMAS; pompa air otomatisAbstract
Ketersediaan air bersih di wilayah pedesaan melalui program PAMSIMAS sering terkendala oleh habisnya token listrik, kegagalan pompa, dan trip overload yang menyebabkan terganggunya pasokan air bagi komunitas. Penelitian ini bertujuan merancang dan memvalidasi sistem peringatan dini panel kontrol pompa PAMSIMAS berbasis mikrokontroler ESP32 dan Telegram Bot, dengan target lag time notifikasi di bawah 10 detik. Metode penelitian meliputi desain dan implementasi perangkat keras (sensor arus ACS712, sensor tegangan ZMPT101B, relay, UPS cadangan) serta pemrograman firmware ESP32 untuk pembacaan sensor dan pengiriman pesan melalui API Telegram. Pengujian dilakukan dalam tiga tahap: unit testing laboratorium, integrasi end-to-end dengan 12 skenario panel, dan uji lapangan selama 14 hari di lokasi Sidabowa. Hasil menunjukkan rata-rata lag time 5,01 detik (std=0,95 s), akurasi deteksi 98,0%, false positive rate 1,5%, serta stabilitas operasi dalam simulasi pemadaman listrik dan overload. Pengalaman pengguna mengindikasikan tingkat kemudahan tinggi dalam penggunaan perintah teks dan format notifikasi. Kesimpulannya, sistem ini efektif, terjangkau, dan mudah direplikasi, menawarkan solusi IoT-Chatbot untuk meningkatkan keandalan layanan air PAMSIMAS. Rekomendasi meliputi perluasan uji di berbagai jaringan seluler dan integrasi SMS fallback untuk memperkuat robustness komunikasi.
References
[1] M. A. D. Alhady et al., “Comparative Performance of Water Index for Water Segmentation Model Using U-Net Architecture,” in 2024 International Conference on Computer, Control, Informatics and its Applications (IC3INA), IEEE, Oct. 2024, pp. 84–88. doi: 10.1109/IC3INA64086.2024.10732848.
[2] A. S. Prihanantya, B. K. Cahyono, Afifuddin, D. A. Pradana, N. S. Yuliawati, and P. E. Octavya, “A Geospatial Big Data Approach for Web Mapping of Water Balance & Dry Days in Indonesia’s Peatlands,” in 2024 IEEE International Conference on Aerospace Electronics and Remote Sensing Technology (ICARES), IEEE, Nov. 2024, pp. 1–7. doi: 10.1109/ICARES64249.2024.10768022.
[3] A. P. Abiyasa, P. I. Dianti Putri, I. Suryanti, and I. M. Riko, “Design of Smart Water Meter as Groundwater Consumption Monitor Tool for Villages in Bali-Indonesia,” in 2024 10th International Conference on Smart Computing and Communication (ICSCC), IEEE, Jul. 2024, pp. 222–226. doi: 10.1109/ICSCC62041.2024.10690612.
[4] A. I. Wibowo and K.-C. Chang, “Provision of Clean Water in Remote Village / Islet through Solar Energy Application: Case of Indonesia,” in 2019 IEEE 3rd International Conference on Green Energy and Applications (ICGEA), IEEE, Mar. 2019, pp. 193–198. doi: 10.1109/ICGEA.2019.8880790.
[5] M. R. T. Siregar, “On-line water quality monitoring on Brantas river East Java Indonesia,” in 2004 IEEE International Conference on Semiconductor Electronics, IEEE, 2004, p. 5 pp. doi: 10.1109/SMELEC.2004.1620825.
[6] A. Pagano et al., “A survey on massive IoT for water distribution systems: Challenges, simulation tools, and guidelines for large-scale deployment,” Mar. 01, 2025, Elsevier B.V. doi: 10.1016/j.adhoc.2024.103714.
[7] T. Sodkomkham, C. Ratanatamskul, and A. Chandrachai, “A novel integrated material flow cost accounting (MFCA)- IoT-lean management system approach to improving water use efficiency and reducing costs in the beverage industry,” Cleaner Environmental Systems, vol. 15, Dec. 2024, doi: 10.1016/j.cesys.2024.100232.
[8] A. Daconte, M. Sierra, J. Noguera, and N. Rodriguez, “Preliminary results of an IoT-based prototype monitoring system for physicochemical parameters and water level in an aquifer: Case of Santa Marta, Colombia,” in Procedia Computer Science, Elsevier B.V., 2024, pp. 478–483. doi: 10.1016/j.procs.2023.12.237.
[9] A. Morchid et al., “IoT-enabled smart agriculture for improving water management: A smart irrigation control using embedded systems and Server-Sent Events,” Sci Afr, vol. 27, Mar. 2025, doi: 10.1016/j.sciaf.2024.e02527.
[10] M. Rumbayan, I. Pundoko, S. R. Sompie, and D. G. Ruindungan, “Integration of smart water management and photovoltaic pumping system to supply domestic water for rural communities,” Results in Engineering, vol. 25, Mar. 2025, doi: 10.1016/j.rineng.2025.103966.
[11] A. Abu Sneineh and A. A. A. Shabaneh, “Design of a smart hydroponics monitoring system using an ESP32 microcontroller and the Internet of Things,” MethodsX, vol. 11, Dec. 2023, doi: 10.1016/j.mex.2023.102401.
[12] R. K. Jain, “Experimental performance of smart IoT-enabled drip irrigation system using and controlled through web-based applications,” Smart Agricultural Technology, vol. 4, Aug. 2023, doi: 10.1016/j.atech.2023.100215.
[13] B. Et-taibi et al., “Enhancing water management in smart agriculture: A cloud and IoT-Based smart irrigation system,” Results in Engineering, vol. 22, Jun. 2024, doi: 10.1016/j.rineng.2024.102283.
[14] T. Adamo, D. Caivano, L. Colizzi, G. Dimauro, and E. Guerriero, “Optimization of irrigation and fertigation in smart agriculture: An IoT-based micro-services framework,” Smart Agricultural Technology, vol. 11, Aug. 2025, doi: 10.1016/j.atech.2025.100885.
[15] A. K. Yadav, V. Yadav, H. Malik, R. Khargotra, and T. Singh, “Design of novel IoT-based solar powered PV pumping systems for agricultural applications in diverse climatic zones of India,” Results in Engineering, vol. 23, Sep. 2024, doi: 10.1016/j.rineng.2024.102584.
[16] A. Morchid, R. Jebabra, H. M. Khalid, R. El Alami, H. Qjidaa, and M. Ouazzani Jamil, “IoT-based smart irrigation management system to enhance agricultural water security using embedded systems, telemetry data, and cloud computing,” Results in Engineering, vol. 23, Sep. 2024, doi: 10.1016/j.rineng.2024.102829.
[17] N. A. Mohd Jais, A. F. Abdullah, M. S. Mohd Kassim, M. M. Abd Karim, A. M, and N. ‘Atirah Muhadi, “Improved accuracy in IoT-Based water quality monitoring for aquaculture tanks using low-cost sensors: Asian seabass fish farming,” Heliyon, vol. 10, no. 8, Apr. 2024, doi: 10.1016/j.heliyon.2024.e29022.
[18] M. R. Al Mamun, A. K. Ahmed, S. M. Upoma, M. M. Haque, and M. Ashik-E-Rabbani, “IoT-enabled solar-powered smart irrigation for precision agriculture,” Smart Agricultural Technology, vol. 10, Mar. 2025, doi: 10.1016/j.atech.2025.100773.
[19] M. N. A. Ramadan, M. A. H. Ali, S. Y. Khoo, M. Alkhedher, and M. Alherbawi, “Real-time IoT-powered AI system for monitoring and forecasting of air pollution in industrial environment,” Ecotoxicol Environ Saf, vol. 283, Sep. 2024, doi: 10.1016/j.ecoenv.2024.116856.
[20] R. M. Ramli and W. A. Jabbar, “Design and implementation of solar-powered with IoT-Enabled portable irrigation system,” Internet of Things and Cyber-Physical Systems, vol. 2, pp. 212–225, Jan. 2022, doi: 10.1016/j.IoTcps.2022.12.002.
[21] M. R. Al Mamun, M. Ashik-E-Rabbani, M. M. Haque, and S. M. Upoma, “IoT-based real-time biofloc monitoring and controlling system,” Smart Agricultural Technology, vol. 9, Dec. 2024, doi: 10.1016/j.atech.2024.100598.
[22] S. N. Razali, K. A. Fariza Abu Samah, M. H. Ahmad, and L. S. Riza, “IoT Based Accident Detection And Tracking System With Telegram and SMS Notifications,” in 2021 6th IEEE International Conference on Recent Advances and Innovations in Engineering (ICRAIE), IEEE, Dec. 2021, pp. 1–5. doi: 10.1109/ICRAIE52900.2021.9703970.
[23] H. K. Patel, T. Mody, and A. Goyal, “Arduino Based Smart Energy Meter using GSM,” in 2019 4th International Conference on Internet of Things: Smart Innovation and Usages (IoT-SIU), IEEE, Apr. 2019, pp. 1–6. doi: 10.1109/IoT-SIU.2019.8777490.
[24] P. HL and S. K, “IoT And GSM Applications for Industrial Health Monitoring,” in 2023 3rd International Conference on Pervasive Computing and Social Networking (ICPCSN), IEEE, Jun. 2023, pp. 1005–1012. doi: 10.1109/ICPCSN58827.2023.00171.
[25] N. Datta, A. Malik, M. Agarwal, and A. Jhunjhunwala, “Real Time Tracking and Alert System for Laptop through Implementation of GPS, GSM, Motion Sensor and Cloud Services for Antitheft Purposes,” in 2019 4th International Conference on Internet of Things: Smart Innovation and Usages (IoT-SIU), IEEE, Apr. 2019, pp. 1–6. doi: 10.1109/IoT-SIU.2019.8777477.
[26] A. A. S. Chowdhury, Y. Arafat, and M. S. Alam, “IoT-GSM Based Controlling and Monitoring System to Prevent Water Wastage, Water Leakage, and Pollution in the Water Supply,” in 2022 International Conference on Innovations in Science, Engineering and Technology (ICISET), IEEE, Feb. 2022, pp. 567–572. doi: 10.1109/ICISET54810.2022.9775876.
[27] M. I. M. Abu.Zaid, R. Abdullah, S. I. Ismail, and N. N. S. N. Dzulkefli, “IoT-based Emergency Alert System Integrated with Telegram Bot,” in 2023 IEEE International Conference on Automatic Control and Intelligent Systems (I2CACIS), IEEE, Jun. 2023, pp. 126–131. doi: 10.1109/I2CACIS57635.2023.10193550.
[28] B. Siddineni, R. Nanditha, T. J. Satyanarayana, and V. S. Rama Krishna Sighakolli, “Design of an IoT based Surveillance System using Blynk, IFTTT, and Telegram,” in 2021 12th International Conference on Computing Communication and Networking Technologies (ICCCNT), IEEE, Jul. 2021, pp. 01–06. doi: 10.1109/ICCCNT51525.2021.9579790.
[29] N. Raghu, I. Miah, and A. B. R. Tonmoy, “Ultrasonic Sensor Based Door Security Camera with Wireless Data Transfer in Telegram Bot Using WIFI,” in 2023 International Conference on Intelligent and Innovative Technologies in Computing, Electrical and Electronics (IITCEE), IEEE, Jan. 2023, pp. 402–405. doi: 10.1109/IITCEE57236.2023.10090954.
[30] A. Morchid, Z. Said, A. Y. Abdelaziz, P. Siano, and H. Qjidaa, “Fuzzy logic-based IoT system for optimizing irrigation with cloud computing: Enhancing water sustainability in smart agriculture,” Smart Agricultural Technology, vol. 11, Aug. 2025, doi: 10.1016/j.atech.2025.100979.
[31] A. Morchid, I. G. Muhammad Alblushi, H. M. Khalid, R. El Alami, S. R. Sitaramanan, and S. M. Muyeen, “High-technology agriculture system to enhance food security: A concept of smart irrigation system using Internet of Things and cloud computing,” Journal of the Saudi Society of Agricultural Sciences, 2024, doi: 10.1016/j.jssas.2024.02.001.
[32] N. Chavhan et al., “APAH: An autonomous IoT driven real-time monitoring system for Industrial wastewater,” Digital Chemical Engineering, vol. 14, Mar. 2025, doi: 10.1016/j.dche.2025.100217.
[33] P. Blanco-Gómez, A. Mateu-Belloch, J. Luis Jiménez-García, A. J. Salas-Cantarellas, J. J. Pieras-Company, and E. Santamaría-Casals, “Real-time ultrasonic water level IoT sensor for in-situ soil permeability testing,” 2024, doi: 10.5281/zenodo.8328181.
[34] K. Duanhpakdee, G. Thananta, and S. Sukpancharoen, “IoT Enhanced Deep Water Culture Hydroponic System for Optimizing Chinese Celery Yield and Economic Viability,” Smart Agricultural Technology, p. 100545, Dec. 2024, doi: 10.1016/j.atech.2024.100545.
[35] A. Pagano, D. Garlisi, F. Giuliano, T. Cattai, R. J. L. Taloma, and F. Cuomo, “Introducing and evaluating SWI-FEED: A smart water IoT framework designed for large-scale contexts,” Comput Commun, vol. 237, May 2025, doi: 10.1016/j.comcom.2025.108146.
[36] M. Salimath, N. Kaliannan, V. Prabhakar, R. Iyyakutty, and K. J. Jeyabaskaran, “IoT and sensor technologies: Increased water and nutrient savings and profit in Banana cv. Grand Nain (AAA) production,” Sci Hortic, vol. 341, Feb. 2025, doi: 10.1016/j.scienta.2025.113982.
[37] V. Kumar S et al., “Evaluation of IoT based smart drip irrigation and ETc based system for sweet corn,” Smart Agricultural Technology, vol. 5, Oct. 2023, doi: 10.1016/j.atech.2023.100248.
[38] K. M. Abubeker and A. Nuthalapati, “Cloud Based LoRaWAN Enabled Water Tank Automation Framework,” in Procedia Computer Science, Elsevier B.V., 2025, pp. 768–775. doi: 10.1016/j.procs.2025.01.037.
[39] S. C. Olisa, C. N. Asiegbu, J. E. Olisa, B. O. Ekengwu, A. A. Shittu, and M. C. Eze, “Smart two-tank water quality and level detection system via IoT,” Heliyon, vol. 7, no. 8, Aug. 2021, doi: 10.1016/j.heliyon.2021.e07651.
[40] J. Á. Garrido-Sarasol et al., “Technical performance analysis of high-voltage battery-based photovoltaic water pumping systems,” Energy Conversion and Management: X, vol. 22, Apr. 2024, doi: 10.1016/j.ecmx.2024.100543.
[41] W. A. Jabbar et al., “Development of LoRaWAN-based IoT system for water quality monitoring in rural areas,” Expert Syst Appl, vol. 242, May 2024, doi: 10.1016/j.eswa.2023.122862.
[42] A. U. Rehman, Y. Alamoudi, H. M. Khalid, A. Morchid, S. M. Muyeen, and A. Y. Abdelaziz, “Smart agriculture technology: An integrated framework of renewable energy resources, IoT-based energy management, and precision robotics,” Cleaner Energy Systems, vol. 9, Dec. 2024, doi: 10.1016/j.cles.2024.100132.
[43] R. G. Anvekar, R. M. Banakar, and R. R. Bhat, “Design alternatives for end user communication in IoT based system model,” in 2017 IEEE Technological Innovations in ICT for Agriculture and Rural Development (TIAR), IEEE, Apr. 2017, pp. 121–125. doi: 10.1109/TIAR.2017.8273698.
[44] A. K. Shah, P. Navin, S. Suman, B. Mahato, and N. Aggarwal, “An Automated Water Resource Management System,” in 2024 4th International Conference on Technological Advancements in Computational Sciences (ICTACS), IEEE, Nov. 2024, pp. 591–596. doi: 10.1109/ICTACS62700.2024.10840728.
[45] C. Yanuchit, K. Pislae-Ngam, B. Kumkhet, N. Pukrongta, P. Sangmahamad, and V. Pirajnanchai, “Development of an IoT-Based Water Pumping Management System for Rice Fields,” in 2025 13th International Electrical Engineering Congress (iEECON), IEEE, Mar. 2025, pp. 1–5. doi: 10.1109/iEECON64081.2025.10987875.
[46] V. Soniya, K. R. Shankar, Sk. Karishma, D. Vamsi, and R. V. H. Prasad, “IoT Based Smart Way of Watering Plants and Feeding Pets,” in 2023 9th International Conference on Advanced Computing and Communication Systems (ICACCS), IEEE, Mar. 2023, pp. 744–749. doi: 10.1109/ICACCS57279.2023.10112691.
[47] V. Tathe, A. Potdar, N. Wyawahare, R. Agrawal, and N. Chavan, “A Review Analysis – RO Waste Water Management System with Home Automation using Green Energy,” in 2025 IEEE International Students’ Conference on Electrical, Electronics and Computer Science (SCEECS), IEEE, Jan. 2025, pp. 1–6. doi: 10.1109/SCEECS64059.2025.10941495.

Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Rahardian Luthfi Prasetyo, Isra’ Nuur Darmawan, Elsa Sari Hayunah Nurdiniyah, Sucipto

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.