Pengaruh Lama Pemanasan dan Konsentrasi Gula terhadap Vitamin C, Viskositas, dan Mutu Mikrobiologis Sirup Ceremai (Phyllanthus acidus L.)
DOI:
https://doi.org/10.32528/penelitianipteks.v11i1.4805Keywords:
Amanda, Vitamin C, Viskositas, MikrobiologiAbstract
Buah ceremai (Phyllanthus acidus L.) berpotensi dikembangkan sebagai sirup buah, namun kualitas dan keamanan produk sangat dipengaruhi oleh proses pemanasan dan konsentrasi gula. Penelitian ini bertujuan untuk menganalisis pengaruh lama pemanasan dan konsentrasi gula terhadap kadar vitamin C, viskositas, dan mutu mikrobiologis sirup ceremai. Penelitian menggunakan rancangan acak lengkap faktorial dengan dua faktor, yaitu lama pemanasan dan konsentrasi gula, serta mengevaluasi karakteristik kimia, fisik, dan mikrobiologis produk selama penyimpanan suhu kamar. Hasil penelitian menunjukkan bahwa kedua faktor tersebut berpengaruh nyata terhadap stabilitas vitamin C dan viskositas sirup, serta memengaruhi mutu mikrobiologis selama penyimpanan. Kombinasi perlakuan pemanasan singkat dan konsentrasi gula menengah menghasilkan karakteristik mutu sirup terbaik. Secara mikrobiologis, sirup ceremai aman dikonsumsi hingga tiga minggu penyimpanan pada suhu kamar.
References
Alam, M., Pant, K., Brar, D. S., Dar, B. N., & Nanda, V. (2024). Exploring the versatility of diverse hydrocolloids to transform techno-functional, rheological, and nutritional attributes of food fillings. Food Hydrocolloids, 146, 109275. https://doi.org/10.1016/j.foodhyd.2023.109275
Amalia, N., Nur afifah, S., Nur Hidayat, A., Setiawan, W., Erlita Budiarti, E., Yusuf Faturochman Program studi Teknologi Pangan, H., Teknologi dan Bisnis, F., & Bakti, U. (2025). Impact of storage and processing on vitamin c in fresh vegetables. Nutrition Scientific Journal, 4(1), 1–8. https://doi.org/10.37058/nsj.v4i1.14051
Belitz, H. D., Grosch, W., & Schieberle, P. (2009). Food chemistry. In Food Chemistry. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-69934-7
Beuchat, L. (1981). Microbial stability as affected by water activity. Cereal Foods World.
Clarke, M. A. (2003). SYRUPS. Encyclopedia of Food Sciences and Nutrition, 5711–5717. https://doi.org/10.1016/b0-12-227055-x/01175-5
Clemens, R. A., Jones, J. M., Kern, M., Lee, S. Y., Mayhew, E. J., Slavin, J. L., & Zivanovic, S. (2016). Functionality of Sugars in Foods and Health. Comprehensive Reviews in Food Science and Food Safety, 15(3), 433–470. https://doi.org/10.1111/1541-4337.12194
Dippong, T., Pop, F., Voşgan, Z., & Mihali, C. (2025). Quality of fruit juices in terms of physico-chemical, microbiological, thermal and antioxidant properties, evaluation of stability during storage. Frontiers in Food Science and Technology, 5, 1656271. https://doi.org/10.3389/frfst.2025.1656271
Ellis, A. L., Mills, T. B., Norton, I. T., & Norton-Welch, A. B. (2019). The effect of sugars on agar fluid gels and the stabilisation of their foams. Food Hydrocolloids, 87(14), 371–381. https://doi.org/10.1016/j.foodhyd.2018.08.027
Ergun, R., Lietha, R., & Hartel, R. W. (2010). Moisture and shelf life in sugar confections. Critical Reviews in Food Science and Nutrition, 50(2), 162–192. https://doi.org/10.1080/10408390802248833
Ghebremedhin, M., Seiffert, S., & Vilgis, T. A. (2024). Effects of sugar molecules on the rheological and tribological properties and on the microstructure of agarose-based fluid gels. Frontiers in Soft Matter, 4, 1363898. https://doi.org/10.3389/frsfm.2024.1363898
Gundurao, A., Ramaswamy, H. S., & Ahmed, J. (2011). Effect of soluble solids concentration and temperature on thermo-physical and rheological properties of mango puree. International Journal of Food Properties, 14(5), 1018–1036. https://doi.org/10.1080/10942910903580876
Hasan, M. M., Islam, M. R., Haque, A. R., Kabir, M. R., Khushe, K. J., & Hasan, S. M. K. (2024). Trends and challenges of fruit by-products utilization: insights into safety, sensory, and benefits of the use for the development of innovative healthy food: a review. Bioresources and Bioprocessing, 11(1), 10. https://doi.org/10.1186/s40643-023-00722-8
Julai, K., Sridonpai, P., Ngampeerapong, C., Tongdonpo, K., Suttisansanee, U., Kriengsinyos, W., On-Nom, N., & Tangsuphoom, N. (2023). Effects of Extraction and Evaporation Methods on Physico-Chemical, Functional, and Nutritional Properties of Syrups from Barhi Dates (Phoenix dactylifera L.). Foods 2023, Vol. 12, 12(6). https://doi.org/10.3390/foods12061268
Koseki, H., Akima, C., Ohasi, K., & Sakai, T. (2001). Effect of sugars on decomposition and browning of vitamin C during heating storage. Nippon Shokuhin Kagaku Kogaku Kaishi, 48(4), 268–276. https://doi.org/10.3136/nskkk.48.268
Leistner, L., & Gould, G. W. (2002). Hurdle Technologies. Food Engineering Series. https://doi.org/10.1007/978-1-4615-0743-7
Microbiological Specifications for, I. C. on. (2011). Microorganisms in Foods 8. Microorganisms in Foods 8. https://doi.org/10.1007/978-1-4419-9374-8
Mieszczakowska-Frąc, M., Celejewska, K., & Płocharski, W. (2021). Impact of Innovative Technologies on the Content of Vitamin C and Its Bioavailability from Processed Fruit and Vegetable Products. Antioxidants, 10(1), 54. https://doi.org/10.3390/antiox10010054
Mizzi, L., Maniscalco, D., Gaspari, S., Chatzitzika, C., Gatt, R., & Valdramidis, V. P. (2020). Assessing the individual microbial inhibitory capacity of different sugars against pathogens commonly found in food systems. Letters in Applied Microbiology, 71(3), 251–258. https://doi.org/10.1111/lam.13306
Narra, F., Piragine, E., Benedetti, G., Ceccanti, C., Florio, M., Spezzini, J., Troisi, F., Giovannoni, R., Martelli, A., & Guidi, L. (2024). Impact of thermal processing on polyphenols, carotenoids, glucosinolates, and ascorbic acid in fruit and vegetables and their cardiovascular benefits. Comprehensive Reviews in Food Science and Food Safety, 23(6), e13426. https://doi.org/10.1111/1541-4337.13426
Ouaabou, R., Hssaini, L., Ennahli, S., & Alahyane, A. (2024). Evaluating the impact of storage time and temperature on the stability of bioactive compounds and microbial quality in cherry syrup from the ‘Burlat’ cultivar. Discover Food 2024 4:1, 4(1), 83-. https://doi.org/10.1007/s44187-024-00133-4
Rahman M. S. (2007). Handbook of Food Preservation Second Edition.
Sato, Y., Kawabuchi, S., Irimoto, Y., & Miyawaki, O. (2004). Effect of water activity and solvent-ordering on intermolecular interaction of high-methoxyl pectins in various sugar solutions. Food Hydrocolloids, 18(4), 527–534. https://doi.org/10.1016/j.foodhyd.2003.09.001
Thuy, N. M., Ha, H. T. N., & Tai, N. V. (2020). Kinetics of ascorbic acid loss during thermal treatment in different pH buffer solutions and the presence of oxygen. Journal Homepage, 4(5), 1513–1519. https://doi.org/10.26656/fr.2017.4(5).130
Vu, T. P., He, L., McClements, D. J., & Decker, E. A. (2020). Effects of water activity, sugars, and proteins on lipid oxidative stability of low moisture model crackers. Food Research International, 130. https://doi.org/10.1016/j.foodres.2019.108844
Wang, Q., Sala, G., & Scholten, E. (2025). Functionality of sugars and sugar replacers in model frozen dessert systems. Current Research in Food Science, 11(8), 101128. https://doi.org/10.1016/j.crfs.2025.101128
Yin, X., Chen, K., Cheng, H., Chen, X., Feng, S., Song, Y., & Liang, L. (2022). Chemical Stability of Ascorbic Acid Integrated into Commercial Products: A Review on Bioactivity and Delivery Technology. Antioxidants, 11(1), 153. https://doi.org/10.3390/antiox11010153
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 Regina Ilse Marcelina BanoEt, Gabriela E Hetharia, Amanda Priscilla Nainiti

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.



