Pengaruh Perbedaan Jenis Bangunan Pertanian dan Volume Penyiraman terhadap Pertumbuhan, Hasil, dan Kualitas Tomat Ceri (Solanum lycopersicum var. cerasiforme)
DOI:
https://doi.org/10.32528/agritrop.v22i1.1852Keywords:
evapotranspiration, greenhouse, microclimate, rain shelte, screenhouseAbstract
Kondisi iklim dan ketersediaan air menjadi kendala budi daya tomat ceri di Indonesia. Rekayasa mikroklimat menggunakan bangunan pertanian serta pengaturan volume penyiraman dapat meningkatkan hasil dan kualitas tomat ceri. Tujuan penelitian ini untuk mengetahui pengaruh perbedaan jenis bangunan pertanian dan volume penyiraman terhadap pertumbuhan, hasil, dan kualitas tomat ceri. Penelitian dilaksanakan pada November 2022 hingga Juni 2023 di Fakultas Pertanian, Universitas Padjadjaran. Penelitian ini menggunakan rancangan petak terbagi dengan dua faktor. Jenis bangunan pertanian sebagai petak utama dengan tiga taraf, yaitu greenhouse, rain shelter, dan screenhouse. Volume penyiraman sebagai anak petak dengan tiga taraf, yaitu 100%, 75%, dan 50% evapotranspirasi tanaman (ETc). Hasil penelitian menunjukkan bahwa tidak terdapat interaksi antara jenis bangunan pertanian dan volume penyiraman terhadap pertumbuhan, hasil, dan kualitas tomat ceri. Jenis bangunan pertanian berpengaruh nyata terhadap tinggi tanaman, jumlah daun, kadar klorofil indeks daun, bobot buah per butir, persentase buah layak pasar, persentase buah Kelas A dan Kelas B. Volume penyiraman berpengaruh nyata terhadap bobot buah per butir serta persentase buah Kelas A dan Kelas B. Greenhouse memberikan pengaruh terbaik terhadap jumlah daun, kadar klorofil indeks daun, dan persentase buah layak pasar. Adapun, volume penyiraman 100% ETc memberikan pengaruh terbaik terhadap bobot buah per butir serta persentase buah Kelas A dan Kelas B
References
Abdel-Razzak, H., Wahb-Allah, M., Ibrahim, A., Alenazi, M., & Alsadon, A. (2016). Response of cherry tomato to irrigation levels and fruit pruning under greenhouse conditions. Journal of Agricultural Science and Technology, 18(4), 1091–1103.
Adams, S. R., Cockshull, K. E., & Cave, C. R. J. (2001). Effect of temperature on the growth and development of tomato fruits. Annals of Botany, 88(5), 869–877. https://doi.org/10.1006/anbo.2001.1524
Agrios, G. N. (2005). Plant Pathology (fifth edit). Elsevier Academic Press. https://doi.org/10.1111/j.1365-3059.1952.tb00010.x
Alemayehu, M., & Alemayehu, G. (2017). Study on alternative technologies for the production of tomato during the rainy season in subhumid climate of Bahir Dar, Ethiopia. Ethiopian Journal of Science and Technology, 10(1), 1–15. https://doi.org/10.4314/ejst.v10i1.1
Asao, T. (2012). Hydroponics - A Standard Methodology for Plant Biological Researches. In Hydroponics - A Standard Methodology for Plant Biological Researches. InTech. https://doi.org/10.5772/2215
Atilgan, A., Rolbiecki, R., Saltuk, B., Jagosz, B., Arslan, F., Erdal, I., & Aktas, H. (2022). Deficit Irrigation Stabilizes Fruit Yield and Alters Leaf Macro and Micronutrient Concentration in Tomato Cultivation in Greenhouses: A Case Study in Turkey. Agronomy, 12(12). https://doi.org/10.3390/agronomy12122950
Chaudhry, S., & Sidhu, G. P. S. (2022). Climate change regulated abiotic stress mechanisms in plants: a comprehensive review. Plant Cell Reports, 41(1). Springer Berlin Heidelberg. https://doi.org/10.1007/s00299-021-02759-5
Chen, J., Kang, S., Du, T., Qiu, R., Guo, P., & Chen, R. (2013). Quantitative response of greenhouse tomato yield and quality to water deficit at different growth stages. Agricultural Water Management, 129, 152–162. https://doi.org/10.1016/j.agwat.2013.07.011
Colimba-Limaico, J. E., Zubelzu-Minguez, S., & Rodríguez-Sinobas, L. (2022). Optimal Irrigation Scheduling for Greenhouse Tomato Crop (Solanum Lycopersicum L.) in Ecuador. Agronomy, 12, 1–15. https://doi.org/10.3390/agronomy12051020
de Sousa, K. C., Costa, R. N. T., Nunes, K. G., & da Silva, A. O. (2022). Irrigation strategies in production of cherry tomatoes under water scarcity conditions. Revista Brasileira de Engenharia Agricola e Ambiental, 26(6), 425–432. https://doi.org/10.1590/1807-1929/agriambi.v26n6p425-432
Deka, D., Singh, A. K., & Singh, A. K. (2018). Effect of Drought Stress on Crop Plants with Special Reference to Drought Avoidance and Tolerance Mechanisms: A Review. International Journal of Current Microbiology and Applied Sciences, 7(09), 2703–2721. https://doi.org/10.20546/ijcmas.2018.709.336
Flores-Velazquez, J., Ojeda, W., Villarreal-Guerrero, F., & Rojano, A. (2017). Effect of crops on natural ventilation in a screenhouse evaluated by CFD simulations. Acta Horticulturae, 95–101. https://doi.org/10.17660/ActaHortic.2017.1170.10
Gora, J. S., Verma, A. K., Singh, J., & Choudhary, D. R. (2019). Climate Change and Production of Horticultural Crops. In Agricultural Impacts of Climate Change (Issue 2). CRC Press. https://doi.org/10.1201/9780429326349-3
Hamdani, J. S., Kusumiyati, K., & Mubarok, S. (2017). Effect of Shading Net and Interval of Watering Increase Plant Growth and Yield of Potatoes ‘Atlantic.’ Journal of Applied Sciences, 18(1), 19–24. https://doi.org/10.3923/jas.2018.19.24
Harel, D., Fadida, H., Slepoy, A., Gantz, S., & Shilo, K. (2014). The effect of mean daily temperature and relative humidity on pollen, fruit set and yield of tomato grown in commercial protected cultivation. Agronomy, 4, 167–177. https://doi.org/10.3390/agronomy4010167
Heryani, N., Kartiwa, B., Sosiawan, H., Rejekiningrum, P., Adi, S. H., Apriyana, Y., Pramudia, A., Yufdy, M. P., Tafakresnanto, C., Rivaie, A. A., Suratman, Dariah, A., Malik, A., Yusuf, & Setiani, C. (2022). Analysis of Climate Change Impacts on Agricultural Water Availability in Cimanuk Watershed, Indonesia. Sustainability, 14(23), 1–18. https://doi.org/10.3390/su142316236
Hikosaka, S., Iyoki, S., Hayakumo, M., & Goto, E. (2013). Effects of light intensity and amount of supplemental LED lighting on photosynthesis and fruit growth of tomato plants under artificial conditions. Journal of Agricultural Meteorology, 69(2), 93–100. https://doi.org/10.2480/agrmet.69.2.5
Hou, X., Zhang, W., Du, T., Kang, S., & Davies, W. J. (2020). Responses of water accumulation and solute metabolism in tomato fruit to water scarcity and implications for main fruit quality variables. Journal of Experimental Botany, 71(4), 1249–1264. https://doi.org/10.1093/jxb/erz526
Jambhulkar, P. P., Jambhulkar, N., Meghwal, M., & Ameta, G. S. (2016). Altering conidial dispersal of Alternaria solani by modifying microclimate in tomato crop canopy. Plant Pathology Journal, 32(6), 508–518. https://doi.org/10.5423/PPJ.OA.06.2015.0101
Karimpour, M. (2019). Effect of Drought Stress on RWC and Chlorophyll Content on Wheat (Triticum Durum L.) Genotypes. World Essays Journal, 7(1), 52–56.
Khapte, P. S., Kumar, P., Singh, A., Wakchaure, G. C., Saxena, A., & Sabatino, L. (2022). Integrative Effect of Protective Structures and Irrigation Levels on Tomato Performance in Indian Hot-Arid Region. Plants, 11(20), 1–16. https://doi.org/10.3390/plants11202743
Klunklin, W., & Savage, G. (2017). Effect on quality characteristics of tomatoes grown under well-watered and drought stress conditions. Foods, 6(56), 1–10. https://doi.org/10.3390/foods6080056
Kurunç, A., & Ünlükara, A. (2009). Growth, yield, and water use of okra (Abelmoschus esculentus) and eggplant (Solanum melongena) as influenced by rooting volume. New Zealand Journal of Crop and Horticultural Science, 37(3), 201–210. https://doi.org/10.1080/01140670909510265
Kusumayati, N., Nurlaelih, E. E., & Lilik, S. (2015). Tingkat keberhasilan pembentukan buah tiga varietas tanaman tomat (Lycopersicon esculentum mill.) pada lingkungan yang berbeda. Jurnal Produksi Tanaman, 3(8), 683–688.
Liu, H., Li, H., Ning, H., Zhang, X., Li, S., Pang, J., Wang, G., & Sun, J. (2019). Optimizing irrigation frequency and amount to balance yield, fruit quality and water use efficiency of greenhouse tomato. Agricultural Water Management, 226, 2–11. https://doi.org/10.1016/j.agwat.2019.105787
Lovelli, S., Potenza, G., Castronuovo, D., Perniola, M., & Candido, V. (2017). Yield, quality and water use efficiency of processing tomatoes produced under different irrigation regimes in Mediterranean environment. Italian Journal of Agronomy, 12(795), 17–24. https://doi.org/10.4081/ija.2016.795
Ma, W., Liang, W., & Zhao, B. (2019). Effect of relative air humidity and high temperature on the physiological and anatomical responses of two Rhododendron cultivars. HortScience, 54(7), 1115–1123. https://doi.org/10.21273/HORTSCI13974-19
Manalu, G., & Rahmawati, N. (2019). Pertumbuhan dan Produksi Tomat Cherry pada Konsentrasi Nutrisi yang Berbeda dengan Sistem Hidroponik. Jurnal Agroteknologi FP USU, 7(1), 117–124.
Marzukoh, R. U., Sakya, A. T., & Rahayu, M. (2013). Pengaruh Volume Pemberian Air terhadap Pertumbuhan Tiga Varietas Tomat (Lycopersicum esculentum Mill). Agrosains: Jurnal Penelitian Agronomi, 15(1), 12–16. https://doi.org/10.20961/agsjpa.v15i1.18986
Medyouni, I., Zouaoui, R., Rubio, E., Serino, S., Ahmed, H. Ben, & Bertin, N. (2021). Effects of water deficit on leaves and fruit quality during the development period in tomato plant. Food Science and Nutrition, 9, 1949–1960. https://doi.org/10.1002/fsn3.2160
Nasrulloh, N., Mutiarawati, T., & Sutari, W. (2016). Pengaruh penambahan arang sekam dan jumlah cabang produksi terhadap pertumbuhan tanaman, hasil dan kualitas buah tomat kultivar doufu hasil sambung batang pada Inceptisol Jatinangor. Kultivasi, 15(1), 26–36. https://doi.org/10.24198/kultivasi.v15i1.12010
Nemeskéri, E., Neményi, A., Bocs, A., Pék, Z., & Helyes, L. (2019). Physiological factors and their relationship with the productivity of processing tomato under different water supplies. Water (Switzerland), 11(3). https://doi.org/10.3390/w11030586
Page, G., Ridoutt, B., & Bellotti, B. (2011). Fresh tomato production for the Sydney market: An evaluation of options to reduce freshwater scarcity from agricultural water use. Agricultural Water Management, 100(1), 18–24. https://doi.org/https://doi.org/10.1016/j.agwat.2011.08.017
Rajametov, S. N., Yang, E. Y., Jeong, H. B., Cho, M. C., Chae, S. Y., & Paudel, N. (2021). Heat treatment in two tomato cultivars: A study of the effect on physiological and growth recovery. Horticulturae, 7(5). https://doi.org/10.3390/horticulturae7050119
Ramdani, H., Rahayu, A., & Setiawan, H. (2018). Peningkatan produksi dan kualitas tomat ceri (Solanum lycopersicum var. cerasiforme) dengan penggunaan berbagai komposisi media tanam dan dosis pupuk SP-36. Jurnal Agronida, 4(1), 9–17. https://ojs.unida.ac.id/JAG/article/view/1524
Reis, A., Dos Santos, A. C., Anache, J. A. A., Mendiondo, E. M., & Wendland, E. C. (2020). Water footprint analysis of temporary crops produced in São Carlos (SP), Brazil. Revista Brasileira de Recursos Hidricos, 25, 1–17. https://doi.org/10.1590/2318-0331.252020200017
Rusman, I. W., Suniti, N. W., Sumiartha, I. K., Sudiartha, I. putu, Wirya, G. N. A., & Utama, I. made S. (2018). Pengaruh Penggunaan Beberapa Paket Teknologi terhadap Perkembangan Penyakit Layu Fusarium pada Tanaman Cabai Rawit ( Capsicum frutescens L .) dan Cabai Besar ( Capsicum annuum L .) di Dataran Tinggi. Jurnal Agroteknologi Tropika, 7(3), 354–362.
Setiawan, R., Ulfa, H., Miftahuljannah, Ajza, D. S., & Setiawan, B. (2021). Penggunaan Green House untuk Budidaya Hortikultura di Halaman Sekolah SD Negeri 063 Lagi Agi. Jurnal Lepa-Lepa Open, 1(3), 480–487.
Setiawati, W., Hasyim, A., & Hudayya, A. (2019). Penggunaan Rain Shelter dan Biopestisida Atecu Pada Budidaya Cabai di Luar Musim untuk Mengurangi Kehilangan Hasil dan Serangan OPT. Jurnal Hortikultura, 28(2), 239. https://doi.org/10.21082/jhort.v28n2.2018.p239-250
Shantanu Jha, N. R. S., & Latha, N. S. (2017). Insect Pests of Tomato and Their Weather Relations under Open and Cover Cultivation. International Journal of Current Microbiology and Applied Sciences, 6(9), 368–375. https://doi.org/10.20546/ijcmas.2017.609.046
Shao, G. C., Deng, S., Liu, N., Wang, M. H., & She, D. L. (2015). Fruit quality and yield of tomato as influenced by rain shelters and deficit irrigation. Journal of Agricultural Science and Technology, 17(3), 691–704.
Short, T., Draper, C., & Donnell, M. (2005). Web-Based Decision Support System for Hydroponic Vegetable Production. Acta Horticulturae, 691(107), 867–870. https://doi.org/10.17660/ActaHortic.2005.691.107
Shrikant, Reddy, G. V. S., Ayyanagoudar, M. S., Babu, B. M., Ajayakumar, M. Y., & Meena, M. K. (2023). Determination of Crop Water Requirement and Crop Coefficient at Different Growth Stages of Tomato by Using Weighing Type Lysimeter in Raichur Region. International Journal of Environment and Climate Change, 13(8), 964–972. https://doi.org/10.9734/ijecc/2023/v13i82034
Singh, H., Dunn, B., Maness, N., Brandenberger, L., Carrier, L., & Hu, B. (2021). Evaluating performance of cherry and slicer tomato cultivars in greenhouse and open field conditions: Yield and fruit quality. HortScience, 56(8), 946–953. https://doi.org/10.21273/HORTSCI16003-21
Sivakumar, R., & Srividhya, S. (2016). Impact of drought on flowering, yield and quality parameters in diverse genotypes of tomato (Solanum lycopersicum L.). Advances in Horticultural Science, 30(1), 3–11. https://doi.org/10.13128/ahs-18696
Srinivasulu, B., Rao, G. S. R., & Singh, P. K. (2020). Physiological Disorders and Their Management. Journal of Pharmacognosy and Phytochemistry, 9(3), 2149–2150. https://doi.org/10.1016/b978-012374130-1.50019-x
Szuvandzsiev, P., Helyes, L., Neményi, A., & Pék, Z. (2014). Effect of water supply on yield characteristics of processing Cherry tomato. Acta Horticulturae, 1038(July), 587–592. https://doi.org/10.17660/ActaHortic.2014.1038.74
Taiz, L., & Zeiger, E. (2002). Plant Physiology. 3rd edn. In Annuals of Botany Company (Issue 20). Sinaueur Associates; 3 edition. https://doi.org/10.1104/pp.900074
Tunggal, F., Setiawan, A., & Sri Rahayu, M. (2020). Respon Tanaman Tomat Varietas Umagna dan Levanso Terhadap Teknik Budidaya dengan Sistem Hidroponik Substrat di PT. Momenta Agrikultutra Amazing Farm, Bandung. Buletin Agrohorti, 7(3), 329–335. https://doi.org/10.29244/agrob.v7i3.30260
Wu, Y., Yan, S., Fan, J., Zhang, F., Xiang, Y., Zheng, J., & Guo, J. (2021). Responses of growth, fruit yield, quality and water productivity of greenhouse tomato to deficit drip irrigation. Scientia Horticulturae, 275, 1–10. https://doi.org/10.1016/j.scienta.2020.109710
Zhang, Y., Song, M., & Li, L. (2012). Effects of air humidity on tomato plant photosynthesis and dry matter accumulation at sub-high temperature. Chinese Journal of Ecology, 31(2), 342–347.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Muhamad Aditia Ghifari, Kusumiyati Kusumiyati, Jajang Sauman Hamdani

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.