Pakcoy (Brassica rapa L.) Aquaponik: Inovasi Urban Farming Menuju Ketahanan Pangan Kota Berkelanjutan

Authors

  • Iskandar Umarie Universitas Muhammadiyah Jember
  • Oktarina Universitas Muhammadiyah Jember
  • M. Hazmi Universitas Muhammadiyah Jember
  • Bejo Suroso Universitas Muhammadiyah Jember
  • Wiwit Widiarti Universitas Muhammadiyah Jember
  • Faridatul Munawaroh Universitas Muhammadiyah Jember
  • Dhiaz Ari Priyandana Universitas Muhammadiyah Jember

DOI:

https://doi.org/10.32528/agritrop.v23i1.3498

Keywords:

Keywords: aquaponics, pakcoy, urban farming, food security, sustainable

Abstract

Penelitian ini bertujuan mengkaji pengaruh varietas pakcoy dan jenis ikan terhadap produktivitas sistem aquaponik sebagai solusi urban farming berkelanjutan. Penelitian menggunakan Rancangan Split Plot dengan rancangan dasar Rancangan Acak Lengkap (RAL) Faktorial dengan 2 faktor: varietas pakcoy (Green, White, Shanghai) dan jenis ikan (Lele, Nila, Mas), masing-masing 3 ulangan menghasilkan 27 unit percobaan. Parameter yang diamati meliputi tinggi tanaman, jumlah daun, lebar daun, diameter batang, panjang akar, dan bobot basah tanaman. Hasil penelitian menunjukkan varietas Shanghai memberikan tinggi tanaman terbaik (22,172 cm), sementara ikan Nila menghasilkan tinggi tanaman optimal (22,793 cm). Kombinasi terbaik diperoleh pada Ikan Nila × Varietas Shanghai (25,249 cm) untuk tinggi tanaman. Untuk bobot basah, kombinasi Ikan Nila × Varietas Green menghasilkan produktivitas tertinggi (3,324 g). Sistem aquaponik terbukti efektif sebagai alternatif urban farming dengan produktivitas optimal melalui pemilihan kombinasi varietas dan jenis ikan yang tepat

References

Effendi, I., Suprapto, H., & Fachrurrozie, M. I. (2019). Optimasi pertumbuhan pakcoy dalam sistem aquaponik skala rumah tangga. Jurnal Akuakultur Indonesia, 18(2), 112-125.

Goddek, S., Delaide, B., Mankasingh, U., Ragnarsdottir, K. V., Jijakli, H., & Thorarinsdottir, R. (2015). Challenges of sustainable and commercial aquaponics. Sustainability, 7(4), 4199-4224.

Kumar, A., Sharma, S., & Mishra, S. (2018). Nutrient composition and uptake patterns in leafy vegetables grown in aquaponic systems. Aquaculture Research, 49(8), 2802-2810

Li, M., Wang, X., Qi, D., et al. (2018). Nutritional quality and safety of Brassica rapa subsp. chinensis grown in different aquaponic systems. Journal of Food Science and Technology, 55(8), 3214-3225. DOI: 10.1007/s13197-018-3339-z

Martinez-Salvador, A., Rodriguez-Gomez, C., & Fernandez-Lopez, M. (2020). Urban food security and sustainable production systems: A global perspective. Food Security, 12(4), 785-802.

Oriental Journal of Chemistry. (2018). Application of aquaponics on pakcoy and nile tilapia: Nutrient dynamics and growth optimization. Oriental Journal of Chemistry, 34(5), 2456-2468.

Palm, H. W., Knaus, U., Appelbaum, S., Goddek, S., Strauch, S. M., Vermeulen, T., ... & Kotzen, B. (2018). Towards commercial aquaponics: a review of systems, designs, scales and nomenclature. Aquaculture International, 26(3), 813-842.

Pantanella, E., Cardarelli, M., Colla, G., Rea, E., & Marcucci, A. (2012). Aquaponics vs. hydroponics: Production and quality of lettuce crop. Acta Horticulturae, 927, 887-893.

PMC. (2023). Nutrient composition and utilization in aquaponic systems. Plant Molecular Biology, 45(2), 234-248.

Rakocy, J. E., Masser, M. P., & Losordo, T. M. (2006). Recirculating aquaculture tank production systems: Aquaponics—integrating fish and plant culture. SRAC Publication,

Rakocy, J. E., Masser, M. P., & Losordo, T. M. (2021). Recirculating aquaculture tank production systems: Aquaponics—integrating fish and plant culture. Aquacultural Engineering, 103197. DOI: 10.1016/j.aquaeng.2021.103197454, 1-16.

ResearchGate. (2019). Fish-to-plant ratios in aquaponic systems: Optimization strategies. Aquaculture Research, 50(8), 2234-2245Safriyani, E., Budiastuti, M. T. S., & Purnomo, D. (2022). Pertumbuhan pakcoy dalam sistem hidroponik menggunakan limbah budidaya ikan lele. Jurnal Hortikultura Indonesia, 13(1), 45-58.

Springer. (2020). Integration of recirculating aquaculture with hydroponic systems: Nutrient cycling and environmental benefits. Aquaculture International, 28(3), 1123-1142.

The Aquaponic Source. (2025). Continuous nutrient cycling in aquaponic systems. Retrieved from https://www.theaquaponicsource.com

Timmons, M. B., & Ebeling, J. M. (2013). Recirculating aquaculture systems (3rd ed.). Ithaca Publishing Company

United Nations. (2018). World urbanization prospects: The 2018 revision. Department of Economic and Social Affairs, Population Division.

Wang, J., Li, Y., Yang, Y., et al. (2020). Optimizing Nutrient Management for Sustainable Hydroponic Production of Leafy Vegetables. Horticulturae, 6(4), 56.

Yildiz, H. Y., Robaina, L., Pirhonen, J., Mente, E., Domínguez, D., & Parisi, G. (2017). Fish welfare in aquaponic systems: Its relation to water quality with an emphasis on feed and faeces—A review. Water, 9(1), 13

Zhang, L., Chen, X., Wang, Y., & Liu, S. (2019). Land use conversion and urban expansion impacts on agricultural sustainability in developing countries. Land Use Policy, 87, 104-115.

Zou, Y., Hu, Z., Zhang, J., Xie, H., Guimbaud, C., & Fang, Y. (2016). Effects of pH on nitrogen transformations in media-based aquaponics. Bioresource Technology, 210, 81-87.

Published

2025-06-30

How to Cite

Umarie, I. ., Oktarina, O., Hazmi, M., Suroso, B., Widiarti , W., Munawaroh, F., & Priyandana, D. A. (2025). Pakcoy (Brassica rapa L.) Aquaponik: Inovasi Urban Farming Menuju Ketahanan Pangan Kota Berkelanjutan . Agritrop : Jurnal Ilmu-Ilmu Pertanian (Journal of Agricultural Science), 23(1), 10–24. https://doi.org/10.32528/agritrop.v23i1.3498