Electric Vehicle Sentiment Analysis Using a Comparison of Naïve Bayes and Support Vector Machine

Authors

  • Faizah Dian Herawati Universitas Kristen Satya Wacana, Salatiga
  • Frederik Samuel Papilaya Universitas Kristen Satya Wacana, Salatiga

DOI:

https://doi.org/10.32528/justindo.v11i1.5026

Keywords:

Sentiment Analyst, Electric Vehicles, Naïve Bayes, Support Vector Machine, TF-IDF

Abstract

The development of electric vehicles in Indonesia has sparked various opinions from the public, which are often shared on social media, especially X. These opinions need to be analyzed to understand how the public views the policies and implementation of environmentally friendly vehicles. This study aims to examine public sentiment toward electric vehicles by comparing two types of text classification algorithms, namely Naïve Bayes and Support Vector Machine (SVM), using the Term Frequency–Inverse Document Frequency (TF-IDF) approach. The data used is Indonesian-language tweets collected through a crawling process, which then undergoes several pre-processing stages such as cleaning, case folding, normalization, tokenizing, stopword removal, and stemming. After that, the data was labeled for sentiment into three categories: positive, negative, and neutral, before being processed using a classification algorithm. To evaluate the model's performance, a confusion matrix was used, which shows the algorithm's performance based on accuracy, precision, recall, and F1-score values. The research results show that the Naïve Bayes algorithm has better results with an accuracy of 92%, while SVM achieves an accuracy of 76%. Therefore, the Naïve Bayes algorithm is considered more suitable for analyzing the sentiment of tweets related to electric vehicles in Indonesia.

References

Agustian, A., Tukero, T., Nurapriani, F., 2022. Penerapan Analisis Sentimen Dan Naive Bayes Terhadap Opini Penggunaan Kendaraan Listrik Di Twitter. Jurnal TIKA 7, 243–249. https://doi.org/10.51179/tika.v7i3.1550

Asri, Y., Kuswardani, D., Suliyanti, W.N., Manullang, Y.O., Ansyari, A.R., 2025. Sentiment analysis based on Indonesian language lexicon and IndoBERT on user reviews PLN mobile application. Indonesian Journal of Electrical Engineering and Computer Science 38, 677. https://doi.org/10.11591/ijeecs.v38.i1.pp677-688

Azzahra, W.L., Mailoa, E., 2025. Analisis Sentimen terhadap RSUD Salatiga Menggunakan SVM dan TF-IDF. Jurnal Indonesia : Manajemen Informatika dan Komunikasi 6, 478–489. https://doi.org/10.35870/jimik.v6i1.1208

Handaya, K.K., Wahyu, S., 2024. Sentiment Analysis on Hate Speech Post 2024 Election for Elected President Using a Hybrid Model Machine Learning. Jurnal CoreIT: Jurnal Hasil Penelitian Ilmu Komputer dan Teknologi Informasi 10, 128–139. https://doi.org/10.24014/coreit.v10i2.31927

Hendrawan, G.N., Kusmiyati, H., 2024. Evaluasi Performa Naive Bayes dan SVM dalam Analisis Sentimen Kendaraan Listrik di Media Sosial Twitter. CESS (Journal of Computer Engineering, System and Science) 9, 299–313.

Kusuma, G.H., Permana, I., Salisah, F.N., Afdal, M., Jazman, M., Marsal, A., 2023. Pendekatan Machine Learning: Analisis Sentimen Masyarakat Terhadap Kendaraan Listrik Pada Sosial Media X. JUSINFO (Jurnal Sistem Informasi) 9, 65–76. https://doi.org/10.19109/jusifo.v9i2.21354

Lende, S., Pati, G.K., Adis, A., Stella, S., Sumba, M., 2024. Analisis Sentimen Komentar Pengunjung Air Terjun Waikelo Sawa Desa Tema Tana Wewewa Timur Kabupaten Sumba Barat Dengan Metode Naïve Bayes Classifier. Jurnal Ilmu Komputer dan Bisnis XV, 42–50.

Lestari, V.B., Hutagalung, C.A., 2025. Evaluation of TF-IDF Extraction Techniques in Sentiment Analysis of Indonesian-Language Marketplaces Using SVM, Logistic Regression, and Naive Bayes. J-KOMA Journal of Computer Science and Applications 08, 22–2025.

Merdiansyah, R., Siska, S., Ali Ridha, A., 2024. Analisis Sentimen Pengguna X Indonesia Terkait Kendaraan Listrik Menggunakan IndoBERT. Jurnal Ilmu Komputer dan Sistem Informasi (JIKOMSI) 7, 221–228. https://doi.org/10.55338/jikomsi.v7i1.2895

Musfiroh, D., 2021. Sentiment Analysis of Online Lectures in Indonesia from Twitter Dataset Using InSet Lexicon. MALCOM: Indonesian Journal of Machine Learning and Computer Science 1, 24–33.

Permataning Tyas, S.M., Rintyarna, B.S., Suharso, W., 2022. The Impact of Feature Extraction to Naïve Bayes Based Sentiment Analysis on Review Dataset of Indihome Services. Digital Zone: Jurnal Teknologi Informasi dan Komunikasi 13, 1–10. https://doi.org/10.31849/digitalzone.v13i1.9158

Prawinata Dian Agus, Rahajoe Ani Dijah, Diyasa I Gede Susrama Mas, 2024. Analisis Sentimen Kendaraan Listrik Pada Twitter Menggunakan Metode Long Short Term Memory. SABER : Jurnal Teknik Informatika, Sains dan Ilmu Komunikasi 2, 300–313. https://doi.org/10.59841/saber.v2i1.857

Ridwansyah, T., 2022. Implementasi Text Mining Terhadap Analisis Sentimen Masyarakat Dunia Di Twitter Terhadap Kota Medan Menggunakan K-Fold Cross Validation Dan Naïve Bayes Classifier. KLIK: Kajian Ilmiah Informatika dan Komputer 2, 178–185.

Rifaldi, D., Abdul Fadlil, Herman, 2023. TEKNIK PREPROCESSING PADA TEXT MINING MENGGUNAKAN DATA TWEET “MENTAL HEALTH.” DECODE: Jurnal Pendidikan Teknologi Informasi ISSN 3, 161–171.

Ritonga, R.R., Sriani, S., 2025. Public Opinion Sentiment Analysis Towards Government Budget Efficiency Policy on Twitter (X) Using the Naïve Bayes Classifier Algorithm. Journal of Information Systems and Informatics 7, 2496–2515. https://doi.org/10.51519/journalisi.v7i3.1234

Setiawan, M.J., Nastiti, V.R.S., 2024. DANA App Sentiment Analysis: Comparison of XGBoost, SVM, and Extra Trees. Jurnal Sisfo Kom (Sistem Informasi dan Komputer) 13, 337–345. https://doi.org/10.32736/sisfokom.v13i3.2239

Tarigan, V.T., Yusupa, A., 2024. Perbandingan Algoritma Machine Learning dalam Analisis Sentimen Mobil Listrik di Indonesia pada Media Sosial Twitter/X. Jurnal Informatika Polinema 10, 479–490. https://doi.org/10.33795/jip.v10i4.5130

Published

2026-02-02

How to Cite

Faizah Dian Herawati, & Frederik Samuel Papilaya. (2026). Electric Vehicle Sentiment Analysis Using a Comparison of Naïve Bayes and Support Vector Machine. JUSTINDO (Jurnal Sistem Dan Teknologi Informasi Indonesia), 11(1), 46–54. https://doi.org/10.32528/justindo.v11i1.5026

Issue

Section

Articles

Similar Articles

You may also start an advanced similarity search for this article.