Sentiment Classification of Aci Application Reviews Using N-Gram Features And Support Vector Machine (SVM) Algorithm
DOI:
https://doi.org/10.32528/justindo.v11i1.5020Keywords:
Sentiment Analysis, N-Gram, Support Vector MachineAbstract
The transformation of information technology has created significant opportunities for the application of Natural Language Processing (NLP) in text-based sentiment analysis, particularly in exploring user opinions toward application-based services. This study aims to analyze the sentiment of user reviews of the ACI (Aku Cinta Indonesia) online motorcycle taxi application available on the Google Play Store by applying the N-gram method and the Support Vector Machine (SVM) algorithm. A total of 1,419 reviews were collected, and after data preprocessing and lexicon-based sentiment labeling, 239 final samples were obtained and categorized into positive and negative sentiments. Feature extraction was performed using combinations of unigram, unigram + bigram, and unigram + trigram, with Term Frequency–Inverse Document Frequency (TF-IDF) weighting. Furthermore, the classification process was carried out using a linear kernel Support Vector Machine with an 80:20 split between training and testing data. The experimental results show that the unigram+ bigram model achieved the highest accuracy of 96%, followed by unigram + trigram at 94% and unigram at 90%, with all precision, recall, and F1-score values across the three models exceeding 88%. These findings indicate that the unigram + bigram combination represents word context more effectively than unigram while remaining more efficient than unigram + trigram, thereby improving the sentiment classification accuracy of the SVM model without significantly increasing computational complexity.
References
Apriliyanti, P.N., Dasuki, M. and Rahman, M. (2026) ‘Klasifikasi Sentimen Positif dan Negatif Ulasan Aplikasi GetContact Dengan Algoritma Naïve Bayes’, JUSTIFY : Jurnal Sistem Informasi Ibrahimy, 4(2), pp. 123–129. doi:10.35316/justify.v4i2.9133.
Br Sinulingga, J.E. and Sitorus, H.C.K. (2024) ‘Analisis Sentimen Opini Masyarakat terhadap Film Horor Indonesia Menggunakan Metode SVM dan TF-IDF’, Jurnal Manajemen Informatika (JAMIKA), 14(1), pp. 42–53. Available at: https://doi.org/10.34010/jamika.v14i1.11946.
Dhinora, M.Y. and Mailoa, E. (2025) ‘Analisa Tweet Mahasiswa untuk Deteksi Gejala Depresi dengan Penerapan Natural Language Processing’, Jurnal Indonesia : Manajemen Informatika dan Komunikasi, 6(2), pp. 1193–1211. Available at: https://doi.org/10.63447/jimik.v6i2.1405.
Iqbal, M., Afdal, M. and Novita, R. (2024) ‘Implementasi Algoritma Support Vector Machine Untuk Analisa Sentimen Data Ulasan Aplikasi Pinjaman Online di Google Play Store’, MALCOM: Indonesian Journal of Machine Learning and Computer Science, 4(4), pp. 1244–1252. Available at: https://doi.org/10.57152/malcom.v4i4.1435.
Mantik, J. et al. (2022) Application Of N-Gram On K-Nearest Neighbor Algorithm To Sentiment Analysis Of TikTok Shop Shopping Features, Jurnal Mantik. Online.
Mukhtar, H. et al. (2022) ‘Peramalan Kedatangan Wisatawan ke Suatu Negara Menggunakan Metode Support Vector Machine (SVM)’, Jurnal CoSciTech (Computer Science and Information Technology), 3(3), pp. 274–282. Available at: https://doi.org/10.37859/coscitech.v3i3.4211.
Nurhidayat, R. and Dewi, K.E. (2023) ‘KOMPUTA : Jurnal Ilmiah Komputer dan Informatika PENERAPAN ALGORITMA K-NEAREST NEIGHBOR DAN FITUR EKSTRAKSI N-GRAM DALAM ANALISIS SENTIMEN BERBASIS ASPEK’, 12(1). Available at: https://www.kaggle.com/datasets/hafidahmusthaanah/skincare- review?select=00.+Review.csv.
Nurlaely, R., Sartika Simatupang, D. and Lucia Kharisma, I. (2023) ‘Analisis Sentimen Twitter Terhadap Cyberbullying Menggunakan Metode Support Vector Machine (SVM)’, 4(2), pp. 376–384. Available at: https://doi.org/10.37859/coscitech.v4i2.5161.
Pratama, S., Triawan, M. and Artikel, R. (2025) Klasifikasi Sentimen Komentar pada Video ‘Rendang Hilang di Palembang’ oleh Willy Salim Menggunakan Algoritma Support Vector Machine (SVM) INFORMASI ARTIKEL ABSTRAK. Available at: https://www.ejournal.lembahdempo.ac.id/index.php/ITBis-SISKOMTI.
Rahayu, S. et al. (2022) ‘Implementasi Metode K-Nearest Neighbor (K-NN) untuk Analisis Sentimen Kepuasan Pengguna Aplikasi Teknologi Finansial FLIP’, Edumatic: Jurnal Pendidikan Informatika, 6(1), pp. 98–106. Available at: https://doi.org/10.29408/edumatic.v6i1.5433.
Sahabuddin, R. et al. (2025) Peran Kepercayaan sebagai Variabel Intervening dalam Pengaruh Kualitas Layanan dan Kepuasan Pelanggan terhadap Loyalitas Pelanggan: Studi pada Perusahaan E-Commerce Shopee dengan Pendekatan Structural Equation Modeling (SEM).
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 Ageng Wijaya Kusuma, Moh. Dasuki, Wiwik Suharso

This work is licensed under a Creative Commons Attribution 4.0 International License.



